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Regular 3D arrays of nanosize clusters can be synthesized in the cages of zeolite
frameworks. Such nanocomposites are known as supralattices. The appeal to use zeolites
mainly comes from the periodic nature of channels and cages in these structures. Alumino-
silicate zeolite frameworks have wide electronic bandgaps and are transparent, which opens
up the possibility of forming new guest electronic states within the gap. Revolutionary
developments in methods of electronic structure theory make possible the quantitative
investigation of such complex systems as supralattices. We discuss recent advances in
theoretical methods based on the electronic structure theory and describe several recent
applications of these techniques to supralattices. Theory can help answer questions as to
what kind of guests are appropriate for a given host and what are the energetics and
dynamics of the cluster formation in the zeolite cages. Optical, magnetic, and thermal
properties of the resulting composite can now, in some cases, be predicted. As examples,
we discuss alkali metals in Si clathrates, sodium-sodalite, zeolite Na-Y, and silicon clusters
in silica-sodalite. We emphasize the fundamental aspects of these problems.

I. Introduction

Supralattices, or cluster solids, are nanocomposites
consisting of a framework “host” material used to
support a 3D periodic arrangement of small atomic
clusters, molecules, or polymers also known as “guest”
species. Typically, zeolite materials are chosen as the
host material. The large zeolite cages, from several tens
to a few angstroms across, offer lodging sites to self-
assemble and stabilize clusters within the zeolite frame-
work. These regularly spaced nanosize clusters have
the geometry of either that of a free cluster, bulk
fragment, or completely new structures stabilized by the
zeolite framework. However, as we shall illustrate
below, other materials with “caged” structures may be
also used to form supralattices. The properties of the
resulting composites are expected to be quite different
from those of both the host material and the guest
species.
Packaging with three-dimensional crystalline period-

icity produces well-defined structures with optical,
magnetic, and electronic properties tunable upon the
chemical modification of the system. Novel nanostruc-
tures with two- and three-dimensional confinement
unaccessible via conventional methods of synthesis offer
possibilities of creating new materials of both scientific
and commercial interest.1 Recent literature has tended
to emphasize the practical aspects, including the discus-
sion of the properties for specific applications, and it
seemed therefore useful in this review to stress some
of the fundamental aspects. Supralattices give us a
unique opportunity to study some of the very basic
questions of materials physics and chemistry. Among
these questions are the process of cluster formation, the
behavior of small clusters under “pressure”, the optical
properties of spatially confined systems, and a whole
family of many-body effects such as the metal-to-

insulator transition and correlated electron magnetism,
to name a few. The zeolite doping is particularly
interesting in the study of electron correlation effects
because both the one-electron and the many-body
interactions can be tuned by altering either the concen-
tration of guests or the “chemistry” of the framework.
It is the purpose of this paper to review some of the
recent results in the theory of these novel materials, as
well as to introduce to a broader audience of materials
scientists new developments in the theoretical tools
currently available.

II. Hosts and Guests

Zeolites are framework structures which are open in
the sense that they contain large polyhedral cages of
atoms connected to each other by channels. The tetra-
hedral atom (T atom) is usually Si and is surrounded
by four oxygen atoms. Commonly the element Al is
substituted for some of the Si atoms. In these alumi-
nosilicates an additional cation (e.g., Na) is incorporated
interstitially within the lattice and its electron is
donated to the Al site to satisfy the bonding require-
ments of a tetrahedral framework. Smith2 defines a
zeolite as a crystalline aluminosilicate with a 4-con-
nected tetrahedral framework structure enclosing cavi-
ties occupied by large ions and water molecules, both
of which have considerable freedom of movement,
permitting ion exchange and reversible dehydration.
However, synthetic zeolites include numerous examples
that do not meet one or more of these criteria. Synthetic
zeolites play a major role in petrochemical catalysis, and
also are widely used in radioactive waste storage, water
treatment, gas separation and purification, and animal
feed supplementssall because of their exceptional abili-
ties for ion-exchange and sorption.3 Zeolite frameworks
offer a unique opportunity for creating new three-
dimensional supralattices, i.e., artificial periodic lattices
of clusters or “quantum dots” of semiconducting (orX Abstract published in Advance ACS Abstracts, July 1, 1996.
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other) materials whose dimensionality and electronic
properties can be partially controlled.
There has been considerable experimental effort in

this field, and several new zeolite-based supralattice
materials have been synthesized. The first work origi-
nated in the Soviet Union when Bogomolov et al.4
incorporated Se in zeolite X and Z. They find that Se
chains self-assemble in the channels, and the optical
absorption threshold shifts upward into the blue region
compared to chainlike bulk trigonal Se. This exciting
observation suggested that “quantum confinement”
produces major changes of the electron states in this
systemsthis effect is similar to the quantum confine-
ment that occurs in layered semiconductor superlattices
but is an order of magnitude larger!
Many subsequent experiments have incorporated

clusters into the framework, and the optical absorption
threshold generally shows the “quantum confinement”
blue-shift. As specific examples we mention CdS5
clusters in zeolites, GaP in zeolite Y,6 Se in mordenite,7,8
Se in zeolites A, X, Y, AlPO-5, and mordenite,9 Na
clusters in sodalite,10 PbS,11 Pt,12 Na-Cs alloys,13 and
K clusters in zeolite A and X.14 This is only a partial
list, and further examples can be found in review
articles by Stucky et al.15 and Ozin et al.16 Part of this
effort has been motivated by applications to nonlinear
optical devices and solar elements, since the Al1-xSixO2
aluminosilicate matrix has a wide bandgap (transpar-
ent).

III. Overview of Theoretical Methods

Imagine that we need to design a nanocomposite with
certain properties. First we will have to select the host
material that meets our requirements and is stable for
the environment of the particular application. Then,
just as if we were designing a laser, we should choose
the active guest species. Finally, we would need to
know whether we can put the guest inside the cages of
the host matrix and make sure that possible guest-host
interections do not destroy the desirable properties of
our “smart material”. Some form of theoretical model-
ing appears to be extremely useful to address some of
the questions raised in making educated choices for any
of the above.
What are our requirements to the model? It must be

able to describe both the zeolite (or other) framework
and the guest cluster as well as possible interactions
between the two. In addition, if we are looking for a
material to be used in electronic, optic, or magnetic
applications, we need to evaluate these quantum prop-
erties of the resulting composite as well. The first
question is, where do the atoms go? And once we know
the atomic geometries we must be able to calculate the
relevant physical properties. Sometimes we actually
know very well where the atoms are (let us say from
X-ray data) and desire to understand some important
aspects of the electronic structure, e.g., to interpret the
optical absorption. Obviously, it would be very desirable
to have a unique systematic approach to handle all of
the possible cases. However, real life is always far more
complex than the best of any of our models. Fortu-
nately, theory combined with certain physical intuition
allows us to choose models describing the most impor-
tant features of the system, albeit on a case-to-case
basis. We shall now mention some of the most useful

theoretical tools with the emphasis on the recent
developments and applications to zeolite supralattices.
Once we have adopted an atomistic picture, there are

two fundamental options on how we describe the
interatomic interactionssit can be done classically
(through empirical force fields) or quantum mechani-
cally (solving the Schrödinger equation for the elec-
trons). We will initiate our discussion with the “correct”
quantum picture of the solid and later touch on the
classical force field methods. The solid is an assembly
of ions (heavy positively charged particles) and electrons
(light negatively charged particles) interacting with each
other via Coulomb forces. The total energy is obtained
from the Hamiltonian operator of interacting ions and
electrons:

where the first two terms are the kinetic energies of
electrons and ions, the third and the fourth terms are
the ion-ion and electron-electron repulsion, respec-
tively, and the last term is the electron-ion attraction.
The first approximation is to decouple electrons from

ions by taking the advantage of the enormous difference
of the time scales for the ionic and electronic motion.
This is done within an adiabatic or Born-Oppenheimer
approximation:17

Here Φλ({R},{r}) is an eigenstate of the electronic
problem for some “frozen” configuration of the nuclei {R}

and functions øλ,n({R}) are the eigenstates of the nuclear
“vibrational” problem:

The ansatz (2) neglects all the electron transitions due
to the ionic motion (that is why the approximation is
called adiabatic); instead, an electronic state itself is
deformed by the ionic displacement. The full discussion
of this problem would, however, take us well beyond the
intended scope of this section. In this work, we will not
be concerned with the quantum aspects of the ionic
motion, and from now on we shall consider the ionic
motion to be classical, and the particles to move in the
potential ε0({R}), where ε0({R}) is the electron ground-
state energy for a frozen nuclear configuration.
The potential function ε0({R}), once it is known,

enables us to obtain the complicated many-body forces
with which atoms interact with each other. From the
energy and forces, one can answer a great number of
questions about the system under consideration, such
as the equilibrium structure, phase transitions, elec-
tronic and thermal properties, etc.
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In the empirical classical potential (or force field)
model, an educated guess is made about the exact form
of the potential function ε0({R}). A first approximation
is to obtain it as a sum of pair interatomic potentials
V(ri,j), where ri,j is the distance between the atoms:

or by a more sophisticated function such as including
3-body, V(ri,rj,rk) or higher contributions. Once the form
of the potential function is chosen, the Newtonian
equations of motion

are integrated using a Gear, Verlet,18 or other algorithm.
There are many interatomic potentials available19-21 for
SiO2, and for a comprehensive review of these tech-
niques we recommend an excellent book by Catlow et
al.22 or a recent review by Sauer.23 The difficulty with
potentials is that they generally need input data for
which the potential must be fit. In some cases such as
aluminosilicates, such data exists. But if a cluster is
incorporated into the lattice, one cannot be sure what
the lattice-cluster interaction parameters are.
The electronic structure method is a quntum mechan-

ical method to obtain ε0 ({R}). It is, however, an
impossible task to solve the Schrödinger equation for
1023 interacting particles! Near-exact solutions for very
small systems by means of quantum Monte Carlo
methods have recently become available.24 Unfortu-
nately, the majority of practical problems cannot be
solved by such exact techniques and must be solved by
means of approximate theories. Historically, chemists
have tended to use Hartree-Fock methods, while
physicist have prefered the density functional theory of
Hohenberg, Kohn, and Sham.25,26 Density functional
theory is in principal exact, but practical applications
are always approximate. A review of Hartee-Fock
calculations can be found in recent papers by Silvi and
Hess.27,28 We next briefly review the density functional
method.
A. Density Functional Theory. Hohenberg and

Kohn25 showed by reductio ad absurdum that v(rb) (the
electron potential) is a unique functional of F(rb) (the
electron density), and therefore the full many-body
ground state is a unique functional of F(rb). They
introduced the energy functional for the ground state:

where G[F] is a universal functional, valid for any
number of electrons in any external potential. They also
showed that the Ev(F) satisfies a variational principle
and assumes its minimum for the ground-state density
F(rb) (the usual constraint of the particle conservation
was applied). The universal functional G[F] contains
the kinetic, exchange, and correlation energies. Unfor-
tunately, the exact form of the functional G[F] for the
general case is still unknown.
Kohn and Sham (KS)26 proposed the following scheme

to solve the minimization problem. An auxiliary inde-

pendent electron problem is introduced. The auxiliary
trial potential generates an electron density in the
following sense. Consider the Schrödinger equation

Here φ is the electron potential from the ions and the
Hartree potential due to all the electrons, and µxc(F) is
the local density approximation (LDA) potential due to
exchange and correlation. The N/2 lowest eigenstates
of this problem are used to generate the electronic
density:

where N is the number of electrons, and the factor of 2
is for spin. Since the potentials φ and µxc depend on F,
the equations must be solved self-consistently. The total
energy of the self-consistent solution is given by

Here εxc(F) is the exchange correlation energy in the local
density approximationsapproximate expressions for εxc
and µxc exist in the literature.29-31

In conclusion of this section, we shall outline how
typically the LDA is being used in practice in solid-state
calculations. First one must specify the electron-ion
interaction. This often is done within the framework
of the pseudopotential theory,32,33 or full potential
calculations may be performed.34 In pseudopotential
theory the electrons of an atom are divided into two
groupssthe tightly bound core electrons and the valence
electrons in the outer shells participating in the bond
formation. Electrons in the first group are effectively
excluded from the picture, by introducing the repulsive
“orthogonalization” potential, which cancels most of the
core potential seen by the outer shell. The result is a
weak pseudopotential for the valence electrons. The
technique has its roots in the orthogonalized plane wave
(OPW) method. Most modern pseudopotential calcula-
tions use a variant of the norm conserving pseudo-
potential introduced by Hamann, et al.35 For an over-
view of the earliest version of pseudopotential theory
we would recommend an article by Cohen and Heine.36
Once we have constructed the single-particle Hamilto-
nian, a basis set of functions is needed to solve the
Schrödinger equation. One possible choice of a basis is
a Fourier series known as plane waves. This program
was realized by Ihm et al., who developed a momentum-
space formalism for the total energy of solids.37 Their
formalism was designed particularly for applications
with the self-consistent pseudopotential method. The
appealing features of this method are the relative
computational simplicity, and the fact that the basis set
is unbiased, since no a priori assumptions about the
shape of the wave-function have been made. The latest
overview of the plane wave method can be found in ref
38. Local basis functions can also be used. In recent
years, forces on atoms have been obtained by dif-
ferentiating eq 10 with respect to atomic coordinates.
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This allows simulation of motion of the atom and is
generally referred to as quantum molecular dynamics.
The dynamics is classical in that Newton’s laws of
motion for the nuclei are used but the forces are
computed within a quantum mechanical framework for
the electrons.
B. QuantumMolecular Dynamics of Interacting

Fragments. The plane-wave total energy method
based on the local density approximation to density
functional theory and the pseudopotential technique has
proven to be quite successful when applied to a variety
of solids. The computational efficiency of this method
has been significantly improved in the past decade,
starting with the work of Car and Parrinello.39 Al-
though the new developments have made possible the
study of systems containing a number of atoms of
roughly an order of magnitude larger than before, the
method is still computationally very demanding both
in CPU time and memory requirements.
In 1989 Sankey and Niklewsky (SN)40 introduced the

ab initio multicenter tight-binding molecular dynamics
method for covalent systems. The method takes ad-
vantage of the LDA energy functional discussed in the
previous section. The salient feature of the technique
is its extreme computational efficiency, which allows one
to perform rapidly first-principles molecular dynamics
simulations of large systems. In this method individual
atoms are treated as Harris41 fragments, and the whole
solid forms the coupled system. In its later version,42
the charge density is treated self-consistently allowing
very ionic systems such as zeolites to be accurately
modeled. The total energy is computed, and the quan-
tum-mechanical forces acting on each atom are evalu-
ated. A step of classical molecular dynamics is per-
formed by solving the equations of motion. Many of the
same steps are involved in the Car-Parrinello tech-
nique.39
Another important step toward a fast and accurate

total energy method consists of choosing an efficient
basis set for the determination of the occupied eigen-
values and eigenvectors of the one-particle Schrödinger
equation. Sankey and Niklewski40 have introduced the
nonorthogonal “fireball” basis of pseudoatomic orbitals
(PAO), which are obtained by solving the atomic prob-
lem with the boundary condition that the “atomic”
orbitals vanish outside a predetermined radius Rc.
Thus the energy eigenstate is a linear combination of
PAOs:

where each PAO satisfies the Schrödinger equation for
a free atom in the pseudopotential and LDA approxima-
tions but with the boundary condition

An important advantage of this basis set is that the
Hamiltonian (and overlap) matrix elements have a short
range, which makes the matrix sparse. Also, the
number of nonzero Hamiltonian matrix elements scales
linearly with the size of the system.
All matrix elements are evaluated in real space. For

the exchange-correlation matrix elements an elegant
linearization was suggested. In addition, the integrals

involving four-centers are not required,42 so that all the
two- and three-center integrals are readily tabulated
beforehand and placed on interpolation grids no larger
than two-dimensional.
The forces acting on each atom are determined by

taking the derivative of the total energy with the respect
to the atomic position:

It should be noticed that in taking the necessary
derivatives, derivatives are taken of the matrix ele-
ments, in contrast to taking the matrix elements of
derivatives, so that Pulay corrections43 are automati-
cally and exactly included. The molecular dynamics
simulations are performed by looking up the necessary
matrix elements and their derivatives from the inter-
polation grids. The equations of motion are integrated
using the Gear or Verlet algorithms.18 Classical mo-
lecular dynamics simulations including the forces com-
puted from quantum calculations of the electrons are
referred to as quantum molecular dynamics, or QMD,
simulations. The Sankey-Niklewski method has proven
to be a very efficient and successful tool for a great
variety of problems, including small clusters, bulk
materials, and surfaces,44 and the electronic structure
of zeolites.45 In the following two sections we shall use
it to study the energetics of doping of zeolites and
zeolite-like materials.
The Car-Parrinello plane-wave technique39 is less

approximate, but with a computation price. Other
simplified QMD techniques also exist, and one used
often for large systems is empirical tight-binding
(ETB).46-49 In this theory the following approximation
to eq 10 is used. Matrix elements of the single-particle
Hamiltonian in a nonspecified local basis between the
orbitals φµ(rb - RBi) and φv(rb - RBj) centered on atoms at
RBi and RBj, respectively, are approximated by analytic
functions of the interatomic distance Hµv

{λ}(|RBi - RBj|).
Here {λ} represents a set of fitting parameters. These
functions are fit to reproduce the electronic band
structure known either from the experiment or from ab
initio calculations. The method is fast but has the main
drawback of all empirical techniques: parameters of the
model are not transferable and must be fitted for each
problem individually. Progress in this direction has
been limited primarily to Si an C semiconducting
systems.
C. Order N Methods. The time-limiting factor of

most current electronic structure methods is the O(N3)
scaling due to diagonalization of the single particle
Hamiltonian matrix, whereN is the number of electrons
in a supercell. This means that when you double the
system size, the computational time increases eight
times! Recently, several techniques were introduced,
which in principle allow this bottleneck to be curcum-
vented by offering an O(N) scaling.
These methods can be divided into two major catego-

ries: statistical methods and variational methods.
Statistical methods use staistical or information theory
approaches and have no obvious connection to the
underlying physical problem they are meant to solve,
and the linear scaling comes from the mathematics.
Variational methods use an energy functional which is
mininmized with respect to some degrees of freedom
representing the electronic ground state, and the linear

〈rb|ψi〉 ) ∑
l,µ
ai(l)φµ

PAO(rb - rbl), (µ ) s, p) (11)

φ
PAO(rb)|rc ) 0 (12)

FBl ) -∂Etot/∂RBl (13)

1796 Chem. Mater., Vol. 8, No. 8, 1996 Reviews



scaling comes from the localized nature of the underly-
ing quantum interactions in the system.
Let us start with a brief description of two statistical

techniques. Drabold and Sankey50 introduced a maxi-
mum entropy approach using importance sampling to
compute the total density of states (DOS), band-
structure energy (BSE) integrals, and related quantities.
To determine the DOS and BSE, one actually does not
need to know all the information contained in the wave
function, but rather the “average” information contained
in the diagonal matrix elements. The DOS F(E), and
particularly the BSE, are obtained by integrating E ×
F(E) up to the Fermi level. All the information carried
by the density of states is contained in any one single
vector ê in the family of vectors of the form

where φj specifies an arbitrary phase, and ψj are the
energy eigenstates. The expectation value of the DOS
operator F̂(E) ) δ(E - Ĥ) between any ê gives the exact
density of states; F(E) ) 〈ê|F̂(E)|ê〉. The vectors ê equally
weigh all of the eigenvalues of the spectrum of H. For
this reason such ê vectors are called impartial vectors.
The Hamiltonian H has moments µn

As can be seen an impartial vector also generates exact
moments through its expectation value

The point is that for a sparce Hamiltonian matrix (as
in a local orbital technique), the expectation value is
an O(N) operation, while taking the trace in eq 15 is
not. There are two key steps in the method. The first
step is to effectively approximate ê in some manner.
This is done by selecting an appropriate random vector
x and using a penalty function method to find an
improved vector x* closer to an impartial vector. The
second step involves transforming the information
contained in ê into F(E) in an O(N) way. This is
accomplished by viewing F(E) as a probability distribu-
tion and using the maximum entropy principle (Maxent)
to determine the best estimate from partial information
(a finite set of moments). The price paid for this
dramatically increased efficiency is that exact values of
individual eigenvalues are not computed, but rather an
accurate, continuous representation of the electronic
DOS is obtained. A different way of using moment
expansions was employed by Wang.51 This method uses
Chebyshev moments calculated using completely ran-
dom wave functions, the moments are then transformed
to energy space. A “Fermi projection” technique is used
to keep unoccupied states from contributing to the
expectation value of the Hamiltoninan. A similar
technique was also developed by Goedecker and Co-
lombo.52 Both statistical methods do much better in the
calculations of the DOS and BSE than in determination
of the forces which must be used in molecular dynamics
simulations. This is a severe limitation of the impartial
vector technique.

We now describe the essence of the variational O(N)
methods. In this we follow the recent discussion by
Vanderbilt.53 These methods can be considered as
special cases of a general approach introduced by
Hernandez and Gillan.54 Instead of using the true one-
particle real-space density matrix

(here ψn,k(r′) are the Bloch functions) one introduces an
ansatz, or a trial density matrix x

where both the “Wannier-like” functions φi(r) and the
site matrix Li,j are spatially localized in the region
defined by some cutoff radius. The “true” density matrix
is idempotent (F2 ) F) and has eigenvalues equal to
either 0 or 1. Since there is no reason why the trial
density matrix should be idempotent, one uses the
“McWeeney transformation”

which has a local maximum at the point F(1) ) 1 and a
local minimum at the point F(0) ) 0. Then one writes
the energy functional

whereHbare contains the kinetic energy and the external
potential (due to the ions), n(r) ) F(r,r) and EHxc(n) is
the Hartree and exchange-correlation functional of the
density. This energy functional is then minimized with
respect to Li,j and/or φi(r).
Several different schemes of such a minimazation

have been suggested. Mauri et al.55 or Ordejon et al.56
have used Li,j ) δi,j and M equal to the number of
occupied orbitals. The energy functional is minimized
with respect to the functions φi(r) which are not or-
thonormal originally but become nearly so at the solu-
tion. Kim et al.57 used an identical technique only the
number of states M was larger than the number of
occupied orbitals and the chemical potential µ had to
be adjusted to have the right number of electrons.
Hierse and Stechel58 used M equal to the number of
occupied orbitals but varied both Li,j and φi(r). Li et
al.,59 Daw,60 and Nunes and Vanderbilt61 used the so-
called density-matrix scheme which results in fixing φi-
(r) to tight-binding orbitals and varying the Li,j. M is
kept equal to the number of tight-binding basis func-
tions. The most general case was considered by Her-
nandez and Gillan. They varied both Li,j and φi(r) and
used M larger tham the number of occupied orbitals.
O(N) techniques have already made possible calcula-

tions of extremly large systems51,62 and will definitely
become an important tool of computational material
science. They are particularly powerful when applied
to insulating systems including biological ones such as
DNA,62 since the orbitals in these systems are naturally
localized. So far O(N) techniques have not been applied
to zeolites, where they appear to be most promising.

IV. Energetics of Doping

A. Si Clusters in Silica-Sodalite. To explore the
possibility of creating new structures and materials

F(r,r′) ) ∑
n,k

ψ*n,k(r) ψn,k(r′) (17)

x(r,r′) ) ∑
i,j

M

Li,jφ*i(r) φj(r′) (18)

F ) 3x2 - 2x3 (19)

Ω ) Tr(F(Hbare - µ)) + EHxc(n) (20)

ê ) ∑
j)1

N

eiφjψj/xN (14)

µn ) ∫-∞

∞
dE EnF(E) ) (1/N) Tr Hn (15)

µn ) 〈ê|Hn|ê〉 (16)
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using zeolite frameworks we start with a simple “model”
systemsSi clusters in silica-sodalite. Silica-sodalite
is the all-silicon version of the zeolite sodalite. Natural
sodalite has a unit-cell composition Na4Al3Si3O12Cl, and
its structure was unraveled by Pauling in 1930.63 In
1985 Bibby and Dale reported the nonaqueous synthesis
of a novel pure-silica form of sodalite,64 which is Si6O12.
The structure is shown in Figure 1. The unit-cell
dimension was determined from the X-ray powder
diffraction pattern to be 8.836 Å. They pointed out that
unlike the rest of low-density silica polymorphs, silica-
sodalite contains only six- and four-membered rings.
The structure was refined in a later experiment of
Richardson et al.65

There are several theoretical studies of silica-sodalite
reported. Vibrational properties were studied both by
the lattice dynamics method66,67 and by molecular
dynamics.68 Studying supralattices of Si clusters is a
good first choice to explore the physics of supralattices
since the â-cage of sodalite is a structural element
common to many zeolites, and there is a great deal of
knowledge about small Si clusters.69-71 However, there
is nothing known experimentally about possible su-
pralattices formed when the two are put together. For
our purposes this system serves as a model.
We have studied the structure, electronic properties,

and energetics of the clusters Si2, Si3, Si4, Si5, Si6, and
Si7 in silica sodalite, since both silicon clusters and
sodalite represent the simplest of both the cluster and
zeolite systems. Full molecular dynamics relaxations
were peformed using the self-consistent quantum mo-
lecular dynamics method known as Fireball-96.42 Elec-
tronically, the doping forms bands in the middle of the
SiO2 bandgap which are very narrow due to the large
separation of the guest species. An example is shown
in Figure 2, the band structure of the supralattice of
Si5 clusters encapsulated inside the â cages of sodalite
is compared with that of Si5 clusters located on the body-
centered cubic lattice of the same size. The dispersion
in the case of the cluster is very small, so only the levels
at the Γ point are shown in the right panel. The most
striking result is that the electronic states of the cluster
appear in the gap region of sodalite practically un-
changed (there is, however, a slight upward shift in

energy). A new composite material is predicted to have
a bandgap equal to that of bulk silicon, but with hardly
any dispersion of the band edges. Many-body correla-
tions are known to be important for narrow bands, and
further theoretical analysis will be needed, using a
theory which explicitly deals with correlation effects,
such a theory is described in section VII. The most
surprising result that is found is that the electronic
structure of Si clusters is not drastically altered by the
cluster-host interaction. This is contrasted with the
case of alkali-metal atoms in sodalite (section VIA),
where the electronic states of the cluster inside the zeolite
are more similar to “cavity states” and are greatly
influenced by the zeolite. Since the Si cluster states are
little altered by the zeolite, this suggests that one can
form a new material with the electronic gap of the
clusterse.g., silica-sodalite “doped” with Si5 is a direct
bandgap material with a bandgap of bulk silicon. Si7
inside silica-sodalite would result in a material with a
bandgap in the highly desirable 2 eV region, although
such a large cluster is energetically unfavorable in
sodalite (see below).
The structure of the Si clusters inside the cages of

silica-sodalite closely resembles that of the clusters in
free space. There are some differences, however; for
example, Si4 in sodalite prefers the tetrahedron rather
than rhombus in the ground state. When we look into
energetics of these clusters we find that only the Sin
clusters with n < 5 have negative energies of encapsu-
lation. The energy of encapsulation Eenc is defined in
the following way: nEenc ) E(Sin + sodalite) - E(Sin) -
E(sodalite) and measures the cost of cluster encapsula-
tion per atom. This result is shown in Figure 3 and may
be understood using the following argument. The
volume of the â-cage is approximately 114 Å3, while the
volume per atom in the diamond phase of Si is 20.2 Å3.
Obviously a Si cluster is “squeezed” when Si6 or Si7 is
put inside the cage.
In conclusion, we find that doping of zeolite cages with

electronically active species allows creation of new
electronic materials with pre-designed electronic prop-
erties. Silicon clusters are found to be weakly interact-
ing with the host, and a number of molecular-like flat
bands are formed in the sodalite bandgap. The silicon
clusters/silica-sodalite is a “model” semiconductor clus-
ter-zeolite system. The structure of the sufficiently

Figure 1. Sodalite lattice, where only the T atoms are shown.

Figure 2. Band structure of Si5 cluster inside the sodalite
â-cage. For comparison, the levels of the Si5 cluster in vacuum
are shown in the right panel.
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small clusters (Sin clusters with n < 5 ) is similar to
that of clusters in free space.
B. Na-Doped Si Clathrates. A particularly simple

example of a supralattice is alkali-metal-doped Si clath-
rates. It is particularly simple because the cluster
inside the clathrate cage is a single alkali-metal dopant
atom. Si compounds with the clathrate structure were
first synthesized in 1965.72 In the Si clathrates, metal
impurity atoms, such as Na or K, stabilize the structure
against collapse into a dense structure (in this case into
the silicon diamond structure), just as the guest mol-
ecules do in the hydrate structures72-75 or in zeolites.
Both stoichiometric phases NaSi6 and nonstoichiometric
phases NaxSi (0 e x e 0.08 ) are formed. Clathrate
structures involving Ge with K impurities have also
been prepared. It has been found that very low con-
centrations of metal atoms can be achieved, and with
specific material processing, it should be possible that
the metal atoms can be entirely removed. The same
structures of Si clathrates, but made of SiO2 with Si-
O-Si bonds, replacing Si-Si bonds, have also been
characterized as polymorphs of SiO2 known as clath-
rasils, such as in naturally occurring melanophlogite
from Mount Hamilton, CA.
Here, we examine the Si136 clathrate which has a

lattice structure that is face centered cubic (fcc). Ex-
perimentally the Si bond length is near 2.37 Å, which
is only slightly expanded compared to 2.35 Å for Si in
the diamond structure; but due to cages within the
structure, the volume per atom is expanded approxi-
maely 18%. The bond lengths are not found to be
sensitive to the concentration of metal atoms. The
structure is derived from packing pentagonal dodeca-
hedra (a small 20 atom fullerene-like cage) and hexa-
kaidecahedra (a larger 28 atom cage) in the ratio 2:1,
and the average ring size is 5.064 (the smallest of any
known such structure). The dodecahedra (16 per unit
cell) form intersecting face-sharing rods along 〈100〉 and
the hexakaidecahedra (eight per unit cell) are in the

interstices of the packing. There are 4 × 34 ) 136 Si
atoms per cubic unit cell which has the same space
symmetry as diamond. The high proportion of five-
membered rings (ideal angle 108°) makes the structures
energetically competitive with diamond (angle 109.5°).
A projection of the structure is shown in Figure 4.
When alkali-metal atoms are present, we will use

formulas of the type Mn @ Si136 to indicate that the cubic
unit cell contains n metal M atoms (where M ) Na, K,
etc.) and 136 Si atoms. For example, Na4Si136 means
that there are four Na atoms in the cubic 136 atom cell.
In contrast with alkali-metal-doped fullerenes where the
dopant atoms are interstitial outside the polyhedra, in
silicon clathrates they occupy interstitials within the
polyhedra. Experimentally, the magnetic susceptibility
disappears in NaxSi136 when x reaches approximately
8, probably due to a transition from an insulator to a
metal.76 This composition is interpreted to be the
composition in which every hexakaidecahedron is fully
occupied. At lower Na concentrations the EPR mea-
surements indicate the presence of well-separated Na
atoms, and allow tracking of electron delocalization with
increasing Na concentration. The first qualitative
description of the insulator-to-metal transition in Si
clathrates was given by Mott77 in his interpretation of
earlier experiments by Cros et al.74

We now discuss the energetics of the alkali-metal
doping. We desire to know if there is a particular order,
in which the large and small cages of Si136 are being
occupied by Na atoms. The Fd3m space group has 8
(b) sites within large cages and 16 (c) sites within small
cages. We consider the following configurations. Con-
figuration I (Na4

8(b)@Si136) half occupies the large cages
with four Na atoms at the 8(b) sites, while configuration
II (Na8

8(b)@Si136) fully loads the large cages with eight
Na atoms at the 8(b) sites. In configuration III
(Na4

16(c)@Si136), the small cages are one-quarter oc-
cupied by placing four Na atoms in each cell at 16(c)
sites, and in configuration IV (Na8

16(c)@Si136) the small
cages are one-half occupied by placing eight Na atoms
in each cell at the 16(c) sites. Finally in configuration
V (Na4

16(c)Na4
8(b)@Si136), eight Na atoms in each cell are

split into four occupying the large cages (half occupancy
of 8(b) sites) and four occupying the small cages (one-
quarter occupancy of 16(c) sites). This choice of con-
figurations enables us to consider relatively isolated
defects (distant pairs) and closely connected clusters
(close pairs) in the regime of low-to-intermediate levels

Figure 3. Energy of encapsulation for Si clusters in silica-
sodalite.

Figure 4. Projection of the Si34 clathrate lattice.
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of doping. By comparing calculations with the same
number of Na and Si atoms, we can directly obtain
energy costs associated with occupying different sites.
Quantum molecular dynamics is used to find the zero
force geometry for each of these configurations. The
results of these calculations are shown in Figure 5. We
denote close pairs as CP, and separated (distant) pairs
are denoted DP in the figure. For example, configura-
tion IV is denoted CP 16-16 which stands for
Na8

16(c)@Si136, and configuration III is denoted DP 16-
16 which stands for Na4

16(c)@Si136. As can be seen, the
close pair Na8

8(b)@Si136 has the lowest energy, which is
lower than that of a distant pair by 0.35 eV/pair. This
implies that under equilibrium conditions, large cages
would be occupied first. After all large cages are
occupied, then the small cages begin to be occupied.
However, in this description, only the energy is consid-
ered and kinetic/entropic effects are neglected.
We have also investigated the electronic states for

these system, and the details will be reported in a
separate publication. The results of this investigation
seem to suggest the following scenario for the metal-
to-insulator transition in the Na-doped clathrate Si136.
At the low level of doping, only the large cages centered
at 8(b) points are occupied with Na atoms. This results
in a very narrow half-filled band near the conduction
band edge of the pure material, which according to a
single-electron theory should lead to a metallic material.
However, many-body correlation effects likely cause the
system to become an insulator via the Mott transition78
(see section VII). When all of the large cages are
occupied, the system becomes a narrow-gap semicon-
ductor. As the doping level is increased, the small cages
centered at 16(c) points become occupied. The highest
occupied bands for these sites appear to have a large
free-electron-like component due to the increased hop-
ping interaction between the guest Na and Si frame-
work. This results in electronic delocalization and
metallic behavior. This qualitative picture is in agree-
ment with the experiments of Roy et al.76 They reported
a correlation between the metal-to-insulator transition
observed in the measurements of the magnetic suscep-
tibility and relative occupancies of the 16(c) and 8(b)
sites estimated from X-ray diffraction line intensities.
The transition is observed when a noticable fraction of
the 16(c) sites begin to be occupied. Obviously, more

experiments are needed to fully document experimen-
tally the different stages of the system’s evolution, and
the nature of the electronic states at each stage. These
materials may find applied uses as high thermopower
materials, or as novel correlated electron systems
including superconductivity. Recently, it has been
reported that Ba-doped Si clathrates are in fact super-
conducting.79

V. Cluster Formation

Partially, the original interest in what we now call
supralattices came from the idea of using the zeolite
framework as an assembler of nanosize particles to be
used as quantum dot structures. For a specific guest
in a chosen host framework, it is important to know the
preferred arrangements of the ions within the frame-
work cages and their electronic levels. Experimental
information is often very difficult to obtain or interpret
due to the complexity of the systems involved. The use
of ab initio computer simulations may help with data
interpretation, and in the interpolation to regimes
unaccessible by experiments. We now review one such
set of calculations to determine the geometry of sodium
in zeolite Y.
A. Sodium-Doped Zeolite Y. Zeolite Y is a dia-

mond arrangement of sodalite â-cages connected via
hexagonal prisms. Alternatively, the structure may be
described as a diamond lattice of large supercages
connected by 12-membered rings. Each supercage
shares 6-membered rings with four neighboring â-cages
in a tetrahedral fashion. Essentialy, the structure of
zeolite Y is that of the rare mineral faujasite with a high
Si:Al ratio. Another related zeolite is zeolite X which
has the same structure but a lower Si:Al ratio. The
tetrahedral sites of zeolite Y are occupied by Al and Si
connected by oxygens. Na counterions are present in
the structure to compensate the charge deficiency
caused by the substitution of Si by Al. There are
natural lodging sites for these countercations in the
structure, four of which are I, II, I′, and III. The site in
the center of the hexagonal prism is labeled I. The site
in the center of the hexagonal window shared by a
supercage and a â-cage (on the supercage side) is labeled
II. The site in the center of the hexagonal window
shared by two sodalite cages is labeled I′. Because of
the diamond symmetry there are four sites II per
supercage and four sites I′ per sodalite cage. Cations
may bind to any of the oxygen atoms on the 12-
membered rings connecting supercages, and these sites
are labeled III. Upon exposure of sodium zeolite Y (Na-
Y) to low levels of sodium vapor causes this material to
change its color from white to pink. This has been
connected by the ESR experiments to formation of a
Na43+ cluster. However, ESR experiments do not give
us the complete picture. First, the location of such a
cluster in the zeolite cannot be established, and thus it
is difficult to determine which factors control the
stability and formation of different clusters. Second, it
is not clear whether all Na species are ESR activesthere
may be other species in the cages which are nonpara-
magnetic and thus “invisible” in the ESR experiment.
Ursenbach et al. have recently examined this problem

theoretically.80 As the “native” zeolite stoichiometry
they chose Na64Si128Al64O384. In the conventional cubic
cell there are eight sodalite â-cages and eight supercages

Figure 5. Energies for different configurations of Na in Si
clathrate. DP and CP stands for “distant pair” and “close pair”,
respectively (see text). The occupation of a large cage at site
8(b) (in Fd3m ) is denoted by 8, and of a small cage at site
16(c) by 16.
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in the cell. Cages of both types contain four Na+ ions,
that adds up to 64 “native” countercations per conven-
tional cell. To reduce computational effort, one chooses
to use the primitive cell of the diamond lattice (fcc) so
that the number of atoms may be reduced by a factor of
4, and only two supercages and two sodalite cages are
contained in this primitive cell.
An attempt was made to use a parallel version of the

Cambridge serial total energy package (CASTEP) known
as CETEP (Cambridge-Edinburgh total energy pack-
age). It is a rather accurate density functional total
energy method using pseudopotentials, periodic bound-
ary conditions, and a plane-wave expansion for elec-
tronic wave functions. However, even the use of the
modern parallel architecture was not nearly enough to
use the plane-wave-based ab initio molecular dynamics
for this system. The large size of the unit cell, exacer-
bated by the presence by the strong pseudopotential of
oxygen (which requires a very large number of plane
waves in the expansion), made the use of this method
totally impossible.
To overcome this problem, Ursenbach et al. intro-

duced an approximate technique which is a hybrid of
the ab initio quantum mechanical description with an
empirical classical potential. Two major assumptions
were made. First, the quantum mechanical consider-
ation was limited only to the electrons contributed by
the alakli metal atomsthe “native” zeolite structure was
regarded as composed of Si4+, Al3+, O2-, and Na+ ions.
Thus the problem is reduced to a few electrons in the
external potential of the framework ions, which are
assumed to have their formal charges. Secondly, the
positions of the framework ions were held fixed, and the
motion of Na+ ions was described via classical poten-
tials.
To better describe the interaction of the excess

electrons with the framework oxygen ions, an ap-
proximate oxygen pseudopotential was introduced of the
form

where

The authors emphasized the importance of the short-
range repulsive term P(r). The parameters for the
oxygen pseudopotential were fitted to reproduce the
formation of the experimentally observed cluster Na43+.
The interaction of the electrons with cations was
described using conventional ab initio pseudopotentials.
A fairly low cutoff energy of 100 eV (dictated by the Na
psedopotential) was used, which resulted in an expan-
sion of the wave function that required ∼32 000 plane
waves per band. If the full peudopotential of oxygen
had been used (which requires an energy cutoff of ∼800
eV), roughly 725 000 plane waves would have been
needed, which is nearly an unimaginable calculation.
Due to the large size of the cell, only the Γ point was
used to sample the Brillouin zone.

Essentially, the model just described treats the alkali
cluster in the external potential of the zeolite frame-
work, rather than the entire doped zeolite system. The
assumption is made that the electronic energy levels
available to the added electrons are much higher in
energy than the valence levels of the host zeolite
framework. Using this “rigid band” model for the
framework means that effects of the electronic polariza-
tion are neglected.
The approximation of the immobile framework is also

quite significant. Only the Na+ ions were allowed to
alter their positions. Empirical classical potentials of
the Born-Mayer form due to Jackson and Catlow81 were
used for the interaction of the Na+ ions with the Si4+,
Al3+, and O2- ions and are of the form

where

Since the atoms of the zeolite were not allowed to move
and react to the presence of the alkali atoms, the
framework could not adopt configurations with more
favorable binding sites.
Although Ursenbach et al. refer to their method as

ab initio, one can see that it is in fact quite empirical.
This underscores how difficult these systems are and
how wide open for theory this field is. Taking into
account these facts, this calculation represents a rea-
sonable hybrid of ab initio and empirical methodssthe
ab initio portion deals with what seems to be the most
important element of the system, while the empirical
portion deals with the less important aspects.
We now review some of the results obtained from this

modeling. Ursenbach et al. studied both the low doping
and the high doping levels, the interactions of guest
clusters in different sodalite cages, and large clusters
in supercages. In this review we shall focus mainly on
their results for the low doping limit.
We first consider the case of a single Na atom added

to the supercage in each unit cell to form a supercell.
Recall that there are 64 native sodium ions in the
conventional cell, so that this doped configuration is
denoted Na1/Na64-Y.
The Na ions are of two types, active and passive. The

64 passive Na ions are native (compensating Al) and
are treated with empirical potentials and have no
explicit electrons. The extra added Na ion is active in
that its electron is explicitly included. Thus the quan-
tum mechanical portion of the calculaton of the Na1/
Na64-Y is that of a single electron in a very large
conventional unit cell. The passive Na ions in the large
supercage are not allowed to move except for the passive
Na ions (arranged in a Na4 cluster) in the small sodalite
â-cage which are allowed to move. A single active Na
atom is placed in the supercage. This is done after the
few native Na ions, which are allowed to move, have
been equilibrated during a short molecular dynamics

VeO2-(r) )
qeqO2-

r
erf(2r) + P(r) (21)

P(r) )

{60 + 25.2525r2 - 45.4963r4 + 12.9014r6 r < 2.2 Å
0 r > 2.2 Å

(22)

u(rij) ) Aije
-Fij(rij) -

Cij

rij
6

+
QiQj

rij
(23)

ANa+-O2- ) 1226.84 eV

FNa+-O2- ) 0.3065 Å

CNa+-O2- ) 2.74 eV Å6 (24)
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run at 300 K. To find the ground-state configuration,
the active Na atom was moved around the supercage,
and this motion was coupled to an A-type distortion of
the Na4 cluster in an adjacent sodalite â-cage. The
minimum-energy configuration was found with the
active Na+ ion at the site III of the square window of
the supercage, and the passive Na4 cluster significantly
contracted. The distance from the passive Na to the
center of the sodalite cage reduced from the native
zeolite value of 2.6 to 2.4 Å. Surprisingly, the single
active electron was transferred from the supercage
containing the active Na ion to the sodalite cage
containing the passive Na4 cluster. The energy of
formation of -0.4 eV with respect to an empty zeolite
cage and an isolated atom was found. However, such a
comparison is not entirely consistent because the atom
and the zeolite are calculated within different theoreti-
cal frameworks. The final configuration is reminescent
of a small polaron. The large relaxation accompanying
the formation of the Na43+ ion results in a high activa-
tion barrier (of the order of 1/2 eV) for electron hopping
from one sodalite cage to another.
An attempt was made that failed to stabilize a

molecular-ion cluster in the supercage by bringing the
active Na ion in proximity with the passive Na ions in
the supercage. All supercage clusters were typically
more than 1 eV higher in energy than the sodalite cage
small polaron. This leads to the important conclusion
that molecular ions at low levels of doping form only
inside the sodalite cages. The stability of other clusters
in the large supercage was also tested. Na2, Na3, Na5,
and Na6 clusters were studied and found to be unstable.
Because the sodalite cages are well separated from

each other, it was expected that adding more active Na
inside the supercage would result in the formation of
Na43+ small polaron molecular ions in other vacant
sodalite cages. This was confirmed for the doping range
from Na1/Na64-Y to Na7/Na64-Y. The border case ap-
peared to be Na8/Na64-Y; starting from this stoichiom-
etry, the extra electrons are forced into the supercage
because all the sodalite cages become saturated.
Electrons localized on the small polaron sodalite

Na43+ clusters weakly interact with each other. In such
a system effects of electron correlation may be impor-
tant. Uresenbach et al. discussed the effects of these
interactions in the context of a Hubbard model (see
section VII). Because of the strong autolocalization of
an electron on the Na43+ cluster, they discounted
hopping of an electron to an empty neighboring sodalite
cage. To estimate the Hubbard parameters, they first
calculated the energy of Na2/Na64-Y with two small
polaron Na43+ clusters being nearest and next-nearest
neighbors and found the energies of these configurations
with respect to the native zeolite plus two free atoms
to be -1.5 and -2.36 eV, respectively. Thus there is a
tendency to prefer next-nearest neighbor configuration.
Next, both electrons were put (with opposite spins) into
a single sodalite Na4 cluster. The difference between
the two results suggests a Hubbard U ∼ 6 eV. For the
nearest-neighbor hopping matrix element |Tnn| the value
of 0.0014 eV was found, and for the next-nearest
neighbor hopping |Tnnn| that of 0.000 29 eV. The hop-
ping integrals appear to be too small (even neglecting
the polaron effect) to delocalize the electron over several
sites at the low doping level. In this case the Hubbard

model may be reduced to a Heisenberg exchange Hamil-
tonian with the exchange integral Jij given by |Tij|2/U.
For the nearest neighbors it gives Jnn ) 1.3 × 10-6 eV,
and for next-nearest neighbors Jnnn ) 6× 10-8 eV. This
nearest-neighbor interaction Jnn corresponds to electron
exchange on a time scale of ∼1 ns which is much shorter
than the time scale of the ESR experiment (10 ns).
Uresenbach et al. conclude that electrons associated
with neighboring sodalite cages are being exposed to the
nuclear fields in several cages on the time scale of the
experiment, and hyperfine structure may not be re-
solved. Because the next-nearest neighbors are ener-
getically preferred, exposure to several cages occurs
when the sodalite Na43+ clusters can no longer avoid
each other because of stoichiometry, i.e., above Na4/
Na64-Y. These results are consistent with the experi-
ments of Anderson and Edwards, who reported the
collapse of the ESR hyperfine structure starting at the
doping levels as low as Na3/Na64-Y.82

VI. Optical Properties

A. Electron Solvation in Zeolites. Sodalite is a
relatively small unit-cell zeolite that consists of identical
cubooctahedra also known as â-cages, or Kelvin poly-
hedra (familiar to physicists as a first Brillouin zone of
an fcc lattice). The lattice is simple cubic with the space
group P4h3n. The centers of the â-cages are on a body-
centered-cubic lattice. The Si and Al atoms are located
at the cage vertexes and are connected by oxygen
bridges. There are only 6- and 4-fold rings in the
structure, and the number of Al atoms is equal to that
of Si atoms in the ideal structure. The electron defi-
ciency caused by the Al/Si substitution is compensated
by the presence of Na+ ions, and such so-called dry
sodalite has a unit formula Na6 [SiAlO4]6. The unit cell
consists of two â-cages with Na ions located near the
centers of hexagonal faces. This material is a wide-
bandgap insulator with the gap of approximately 6 eV.10
When exposed to Na vapor, dry sodalite changes

colors from white to light blue (low doping limit), and
with increasing Na concentration to blue, then purple,
and finally black (high doping limit). Black sodalite has
four Na ions in every cage, forming tetrahedra. Three
of the Na electrons compensate the Al, while the fourth
electron is “extra” and dopes the sample. This excess
electron is said to be solvated in sodium-sodalite. The
system is somewhat analogous to color centers in ionic
crystals. We now discuss a simple theory that explains
the optical absorption spectra of this system given that
we know the atomic positions.
Haug et al. introduced a simple model to calculate

the spectrum of the Na-doped sodalite in the low
concentration limit (isolated Na4 clusters).83 They
limited their consideration to the excess solvated elec-
tron. The zeolite framework is assumed to be rigid, and
the framework atoms were treated as point charges.
With these approximations they write the following
Hamiltonian for the excess electron:

where the first term is the kinetic energy of the electron,
and the second term describes the interaction of the
electron with the framework atoms. The electron posi-
tion and momentum are r and p, respectively. The

Ĥ ) (p2/2m) + V(r;R,Q) (25)
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positions of the framework atoms as well as the Na ions
in the cluster are denoted by R, and their charges by
Q. The electron ground state in configuration space,
〈x,y,z|g〉, was found using the imaginary time propagator
method:

where â is a real number with units of inverse energy.
The idea is that starting from any state Ψ (which must
not be orthogonal to the ground state), propagating in
imaginary time to infinity dampens states according to
their energy, and only the ground state will survive.
This is trivially proven by expanding the state Ψ in a
complete set of the eigenfunctions of the Hamiltonian.
Another way to think of it is that the imaginary time
operator e-âĤ acts like the Gibbs probability factor,
which as â f ∞ corresponds to T ) 0 K and therefore
picks out only the ground state.
To calculate the absorption spectrum, they used time-

dependent quantum mechanics. The following expres-
sion was used to calculate the absorption cross section:

Here C(t) is the overlap integral (proportional to the
matrix element of the dipole interaction between the
initial state and the state at the time t), and a “window”
function fτ(t) is introduced to compensate for the finite
integration over the time domain:

The window function cuts off the time evolution beyond
the time τ; thus a spectral resolution is introduced in
the problem. The time τ is the time for the promoted
state (the state excited by the dipole interacton with
light) to explore the potential energy surface.
The interaction between the electron and the frame-

work is described by two-body, spherically symmetric,
energy-independent local potentials:

The sum is taken over the framework atoms and the
Na cluster. The values of λ ) 15.0-25.0 Å were used.
Ri
c is a cutoff distance which truncates the Coulomb

potential. Note that there are no true long-range
Coulomb effects in this model.
The spectrum consists of approximately six peaks

centered around 3 eV and spread over the range of
approximately 1 eV. Haug et. al. have studied how the
different parameters of the Hamiltonian in their model
effect the resulting absorption spectrum:
(i) The dependence of the absorption spectrum on the

framework charges. Five different sets of atomic charges
were tried. It was known from ESR experiments that
the excess electron is localized on the Na4 cluster; that
fact allowed one set to be immediately dismissed. The
spectrum was found to be sensitive to the charges of
the zeolite atoms only when the set with the ionic
character close to 50%.
(ii) Time scales of the absorption spectrum and

electron dynamics. Sampling time from 5 to 40 fs were

tried. Results suggested photoconductivity in the low
concentration limit.
(iii) The dependence of the absorption spectrum on

the dimension of the Na4 clusters. It was found that
the increase of the cluster radius (the distance from the
Na ion to the center of the cluster) by 0.3 Å causes an
enormous red-shift of the spectrum by almost 2 eV.
(iv) The dependence of the absorption spectrum on the

orientation of the Na cluster was found to be significant.
(v) Polarization effectssthe absorption spectrum was

sensitive to the laser polarization.
(vi) Alkali substitution effects were mimicked by

changing the cutoff distance Rc
i. Calculations for K,

Na, and Li showed that the overall structure of the
spectrum does not change significantly upon these
substitutions.
Although these calculations were encouraging, with-

out more complete experimental input it was impossible
to choose the best set of parameters. In a subsequent
paper, Srdanov et al. measured the absorption spectra
in the low doping limit which provided the information
necessary for the best parameter assignment.84 The
wide breadth of the spectra (1.5 eV) did not allow an
investigation of the effects of cluster orientation, laser
polarization or the sampling time for the excited state.
However, the estimate of the atomic charges was made
(QSi < +2, QAl < +1, QO > -1, and QNa ) +1), and the
Na atom-center cage distance was estimated to be 2.401
Å.
The model was later extended for the saturation (high

doping) limit in the work of Monnier et al.85 They
performed electronic structure calculations using the
empirical pseudopotential between the solvated electron
and the framework and Na ions of the form

The effective charges qi were modified from those of
Haug et al.,83 and the imaginary time propagation
method was again used. Monnier et al. calculated the
band structure of the doped sodalite and found that the
system is a narrow-band metal. For comparison, they
also calculated the band structure of a periodic arrange-
ment of Na tetrahedra on a body-centered-cubic lattice
(identical with the arrangement of the â-cages of so-
dalite) but without the sodalite AlSiO4 framework.
They found that the lowest conduction bands of the
saturated sodalite closely resemble the two lowest bands
of the tetrahedral sodium. Thus the effect of the
electron-framework interaction seemed to be to put
these states into the bandgap of sodalite. The fact that
the metallic band was narrow suggested that one should
go beyond a one-electron model to investigate the
possible effects of electron correlations.
Using the pseudopotential band structure calculation,

Monnier et al. have fitted their results to an empirical
tight-binding Hamiltonian, which was used to estimate
the effect of electron-electron interactions. They esti-
mate the Hubbard U (the Coulomb interaction energy
between two electrons residing in the same â-cage) to
be about 6.18 eV. In addition they found that the
energy required to transfer an electron from one cage
to another cage when it is already occupied by a
different electron to be 4.4 eV. This energy is much
larger than the hopping integral of their tight-binding
model. On the basis of these facts, they suggested the

〈x,y,z|g〉 ) limâf∞〈x,y,z|exp(-âĤ)|Ψ〉 (26)

σ(ω;τ) ∼ ω Re ∫0∞dt fτ(t) exp(iωt)C(t) (27)

fτ(t) ) exp[-(t/τ)2] (28)

V(r;{R,Q}) )

∑
i

-e2Qi exp[-(|r - Ri|/λ)4]/min((|r - Ri|, Ri
c) (29)

V(r) ) -q erf(r/Rc)/r (30)
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possibility of Mott localization. Mott localization is a
metal-to-insulator transition which occurs when the
electron hopping from one lattice site to another is
impeded by a strong Coulomb repulsion from other
electrons already residing on this site.
More recently a major refinement of the model has

been performed by Blake et al.86 The magnitude of the
charge on the framework atoms was now provided by
ab initio STO-3G calculations. The ion-frame interac-
tion included a short-range Born-Mayer repulsion, as
well as a dispersion and an induced dipole-monopole
interaction. The long-range Coulomb interaction was
calculated via the Ewald summation. In this work the
positions of the Na+ ions were optimized in the force
field of the rigid framework. It was found that the
radius of the Na tetrahedron is smaller by 0.32 Å for
the doped dry sodalite than that given by the formal
charge model. The adiabatic ground state was calcu-
lated using a third-order Lanczos method, and a 10-fold
improvement in computational efficiency was achieved
over the method previously used by Haug et al.83 Time-
dependent perturbation theory was used to calculate the
optical absorption spectrum. One of the main conclu-
sions of this work is that the problem is sensitive to the
long-range part of the electron-framework potential. An
important accomplishment of this work is that all
parameters but one (the size of the oxygen charge) were
determined prior to the calculation of the absorption
spectrum.
In conclusion, we would like to emphasize that by

saturating sodium sodalite with Na, a new material is
created. Sodium metal is separated into small clusters
supported by the zeolite frame. The resulting material
has very little resemblance to other sodium compounds
or sodium metal. By modifying chemically the frame-
work, one can at least partially control the properties
of the resulting nanocomposite.

VII. Many-Electron Effects

One material which appears to show magnetic effects
and in which there have been several experiments is K
clusters in Linde type A (LTA) zeolites. LTA is an
expanded variant of the sodalite structure in which the
cubooctahedra (the â-cage) of sodalite are separated and
bonds are formed across the rectangular faces. Expand-
ing the lattice in this way opens up large cavities
between cubooctahedra called R-cages, or supercages.
Each supercage with a diameter of approximately 11 Å
is surrounded by eight sodalite â-cages. The lattice is
simple cubic with an R-cage at each lattice point. The
potassium ions are ion-exchanged into Na-LTA and the
“charge balanced” material is K12Al12Si12O48.87 Excess
K+ ions may also be incorporated, and it is these excess
ions that donate electrons to the system, producing a
drastic change in the optical spectra (the material
changes from white to a dark brick red color), and to
the magnetic properties. This is similar to the solvated
electron in sodalite described in section VIA. The active
K is incorporated into the supercages of LTA, and the
excess doping can be varied, which varies the size of
the K cluster.
The most intriguing aspect of the K-LTA system to

fully understand is the ferromagnetic behavior observed
at low temperature. The atomic species (K) is of course
nonmagnetic. The ferromagnetism does not occur in

lightly doped samples, only in highly doped material.
This suggests that it is an electronic interaction between
the clusters in one supercage and the cluster in a
neighboring supercage that is responsible. Kodaira et
al.88 report ferromagnetism with 2-3 < n < 6-7, where
n is the average number of K 4s electrons in the cluster.
Clusters in zeolites offer a unique opportunity to

study a true many-body correlated electron system. The
number of electrons (band filling) is adjustable by
altering the doping, and the parameters which deter-
mine the correlated ground state can be altered by using
a different supercage, e.g., the supercage in faujasite
and Linde type A have different sizes.
Modeling the ferromagnetic interactions is difficult

since it results from electron correlations with the many-
body system. Delocalized electrons, such as in K metal,
exhibit Pauli paramagnetism or Landau diamagnetism.
The K-LTA system studied by Nozue et al.87-89 has
aspects of both a localized and a delocalized system. The
interactions must be modeled using a Hubbard Hamil-
tonain, and this was done by Chowdhury et al.90
following the work of Nozue et al.89

Let us examine the physics and chemistry of this
modeling. The R-cage is assumed to a first approxima-
tion to act as a spherical well for the electrons of the
the K-cluster (this assumption is quite unlike the
assumptions made in the modeling of Na doped zeolite
Y80 discussed section VA, where the excess electron
resides in the smaller â-cages). The electronic state in
each cage can tunnel to one of its six neighboring cages
on the simple cubic lattice. Neglecting for the moment
this tunneling, the energies for the lowest s-, p-, and
d-states of a spherical well of radius “a” are EL ) p2kL2/
2m, where kL ) π/a, 1.43π/a, and 1.83π/a for L ) 0, 1,
and 2, respectively, where L is the orbital angular
momentum. For an R cage of radius 5.5 Å for LTA, we
find Es ) 1.24 eV, Ep ) 2.54 eV, and Ed ) 4.25 eV. At
low concentrations of K, only the lowest s-level is
occupied, and dipole-allowed s-to-p transitions occur and
are expected at 1.3 eV. Qualitatively, this is in reason-
able agreement with the experimental optical absorption
bands B1 and B2 at 1.22 and 1.0 eV respectively.88 The
fact that there are two peaks instead of one is believed
to be due to the interaction of the wave function of one
cage with one in a nearby cage (tunneling). It is
remarkable that such a simple model seems to give a
first-order interpretation of the results. Note that in
this picture the physics is controlled not by the K ion
but rather by the geometry of the cage itself. To test
this further, Kodaira et al.88 ion exchanged Rb to from
Rb-LTA and found an absorption spectrum in the same
energy range as for K-LTA. There was a slight differ-
ence in the shape of the absorption spectrum, however,
but overall the results support the conclusion that the
framework itself controls the absorption.
We now examine the high-density K-doped region

which is the ferromagnetic region and which presents
the greatest challenge to theory. Here the S state is
fully occupied by two electrons and electrons begin to
partially occupy the 6-fold degenerate (including spin)
p state (T1u in cubic symmetry).
Experimentally, the magnetization takes on its maxi-

mum value when the T1u level is approximately half
occupied with three electrons. Choudhury et al.90
modeled this system with a Hubbard Hamiltonian,
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which for a half-filled s-like level normally gives an
antiferromagnetic or paramagnetic metal. The inclu-
sion of p-like levels changes the behavior. The model
many-body T1u Hamiltonian is

Here al,σ
† (λ) creates an electron at lattice site l, of spin σ

(v or V), on orbital λ (px, py, or pz), and nlvλ )
al,v
† (λ)al,v(λ) is the number operator. The spin operator
S is 1/2∑µ,νal,µ

† (λ)σbµνal,ν
† (λ), where σbµν are the µ, ν ele-

ments of the Pauli spin matrixes. For the z component
(Sl,λ)z ) 1/2(al,v

† (λ)al,v(λ) - al,V
† (λ)al,V(λ)) which counts the

difference in occupation of spin-up and spin-down
electrons.
This model is a many-body model that attempts at

the onset to include correlations between the electrons.
The hopping matrix elements tl,l′(λ,λ′) take into account
the tunneling of an electron in one R-cage at l to another
at l′. If these quantities t are very large, the electron
will tend to delocalize itself and exist as a paramagnetic
free electron-like metal. The quantity U is the electron-
electron repulsive integral (U > 0) which correlates two
electrons at a single site (one expects U to be large for
small cages and vice versa). U tends to localize the
electron since the electron-electron interaction is mini-
mum when each electron is allowed to reside in its own
cage segregated from other electrons. The term J (J >
0, but with an overall minus) is an exchange integral
whose physics is to reduce the Coulomb repulsion
between two electrons on two different p orbitals (e.g.,
px and py) if their spins are aligned. This physical
phenomenon occurs because of the overall antisymmetry
of the Fermion wave function (Pauli exchange principle)
which tends to keep two like spins (symmetric spin part
of the wave function) further away spatially from each
other by making the spatial part of the wave function
antisymmetric. Such modeling is approximate since one
must first obtain the parameters t, U, and J and then
solve the many-body Hamiltonian to determine the
ground state. Finally, statistical mechanics may be
used to find the temperature dependence of the system.
There have been several theoretical papers dealing with
obtaining the Hubbard model parameters using local
density approximation techniques.91-93 For the problem
of LTA supercages, order of magnitude values for t (to
nearest neighbors) and for U + J are 0.1 and 1 eV,
respectively.
Although an exact ground-state solution of eq 31 is

extremely difficult to obtain, it can be solved simply,
but approximately, using mean-field theory. Choudhury
et al. find the ground state of the system to take on all
three possible states (ferromagnetic, antiferromagnetic,
and paramagnetic) as a function of the Hubbard pa-
rameters. This contrasts with the Hubbard model for
a nondegenerate s-states which generally gives antifer-
romagnetic states or paramagnetic states only. The
desired ferromagnetic state is “sandwiched” in param-
eter space between the antiferromagnetic state and
paramagnetic state. Thus the model only shows that
the observed ferromagnetic state can exist, but since the
parameters must simply be chosen to give the experi-

mental result, the conclusion that the model given by
eq 31 “explains” the experiment is not conclusive.
However, these calculations illustrate an important and
somewhat unexpected point which is that the ferromag-
netic state is stabilized substantially by second-neighbor
interactions. The first neighbors are at sites l1) a(100)
and second neighbors are at sites l2 ) a(110). Adding
hopping integrals t0,l2 changes the single particle ener-
gies En(k) and causes the electronic density of states to
form three peaks instead of one. This destroys the
perfect nesting of the bands, which favors the antifer-
romagnetic state and tips the energetics to favor the
ferromagnetic state. However, it is difficult to see in
LTA why these second-neighbor interactions would be
nonnegligible, and so this observation must be inter-
preted with caution.

VIII. Conclusions

Regular 3D arrays of nanosize clusters can be syn-
thesized in the cages of zeolite frameworks. Such
nanocomposites are known as supralattices. Zeolites
already have many industrial applications, and su-
pralattices appear to be a potential “futuristic” new use
for them. The zeolite framework acts as templates for
semiconductor or metal supralattices, whose electronic
properties of the guest/framework can be quite novel.
The large size and complexity of these systems make
them a challenge to solid-state theorists. In this article
we have tried to demonstrate that electronic structure
based methods, although computationally demanding,
are now able to address some of the important issues
to obtain an understanding on a microscopic scale of the
properties of these nanocomposites. Solid-state methods
provide a unified framework for studying both reactivity
and structure of zeolites. The field is wide open and
enormously exciting. The tremendous advances in
electronic structure theory and computing power now
finally make these systems accessible.
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